最近的工作突出了因果关系在设计公平决策算法中的作用。但是,尚不清楚现有的公平因果概念如何相互关系,或者将这些定义作为设计原则的后果是什么。在这里,我们首先将算法公平性的流行因果定义组装成两个广泛的家庭:(1)那些限制决策对反事实差异的影响的家庭; (2)那些限制了法律保护特征(如种族和性别)对决策的影响。然后,我们在分析和经验上表明,两个定义的家庭\ emph {几乎总是总是} - 从一种理论意义上讲 - 导致帕累托占主导地位的决策政策,这意味着每个利益相关者都有一个偏爱的替代性,不受限制的政策从大型自然级别中绘制。例如,在大学录取决定的情况下,每位利益相关者都不支持任何对学术准备和多样性的中立或积极偏好的利益相关者,将不利于因果公平定义的政策。的确,在因果公平的明显定义下,我们证明了由此产生的政策要求承认所有具有相同概率的学生,无论学术资格或小组成员身份如何。我们的结果突出了正式的局限性和因果公平的常见数学观念的潜在不利后果。
translated by 谷歌翻译
Machine learning-based segmentation in medical imaging is widely used in clinical applications from diagnostics to radiotherapy treatment planning. Segmented medical images with ground truth are useful for investigating the properties of different segmentation performance metrics to inform metric selection. Regular geometrical shapes are often used to synthesize segmentation errors and illustrate properties of performance metrics, but they lack the complexity of anatomical variations in real images. In this study, we present a tool to emulate segmentations by adjusting the reference (truth) masks of anatomical objects extracted from real medical images. Our tool is designed to modify the defined truth contours and emulate different types of segmentation errors with a set of user-configurable parameters. We defined the ground truth objects from 230 patient images in the Glioma Image Segmentation for Radiotherapy (GLIS-RT) database. For each object, we used our segmentation synthesis tool to synthesize 10 versions of segmentation (i.e., 10 simulated segmentors or algorithms), where each version has a pre-defined combination of segmentation errors. We then applied 20 performance metrics to evaluate all synthetic segmentations. We demonstrated the properties of these metrics, including their ability to capture specific types of segmentation errors. By analyzing the intrinsic properties of these metrics and categorizing the segmentation errors, we are working toward the goal of developing a decision-tree tool for assisting in the selection of segmentation performance metrics.
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
Research has shown that climate change creates warmer temperatures and drier conditions, leading to longer wildfire seasons and increased wildfire risks in the United States. These factors have in turn led to increases in the frequency, extent, and severity of wildfires in recent years. Given the danger posed by wildland fires to people, property, wildlife, and the environment, there is an urgency to provide tools for effective wildfire management. Early detection of wildfires is essential to minimizing potentially catastrophic destruction. In this paper, we present our work on integrating multiple data sources in SmokeyNet, a deep learning model using spatio-temporal information to detect smoke from wildland fires. Camera image data is integrated with weather sensor measurements and processed by SmokeyNet to create a multimodal wildland fire smoke detection system. We present our results comparing performance in terms of both accuracy and time-to-detection for multimodal data vs. a single data source. With a time-to-detection of only a few minutes, SmokeyNet can serve as an automated early notification system, providing a useful tool in the fight against destructive wildfires.
translated by 谷歌翻译
Information diffusion in Online Social Networks is a new and crucial problem in social network analysis field and requires significant research attention. Efficient diffusion of information are of critical importance in diverse situations such as; pandemic prevention, advertising, marketing etc. Although several mathematical models have been developed till date, but previous works lacked systematic analysis and exploration of the influence of neighborhood for information diffusion. In this paper, we have proposed Common Neighborhood Strategy (CNS) algorithm for information diffusion that demonstrates the role of common neighborhood in information propagation throughout the network. The performance of CNS algorithm is evaluated on several real-world datasets in terms of diffusion speed and diffusion outspread and compared with several widely used information diffusion models. Empirical results show CNS algorithm enables better information diffusion both in terms of diffusion speed and diffusion outspread.
translated by 谷歌翻译
Deep neural networks (DNN) are prone to miscalibrated predictions, often exhibiting a mismatch between the predicted output and the associated confidence scores. Contemporary model calibration techniques mitigate the problem of overconfident predictions by pushing down the confidence of the winning class while increasing the confidence of the remaining classes across all test samples. However, from a deployment perspective, an ideal model is desired to (i) generate well-calibrated predictions for high-confidence samples with predicted probability say >0.95, and (ii) generate a higher proportion of legitimate high-confidence samples. To this end, we propose a novel regularization technique that can be used with classification losses, leading to state-of-the-art calibrated predictions at test time; From a deployment standpoint in safety-critical applications, only high-confidence samples from a well-calibrated model are of interest, as the remaining samples have to undergo manual inspection. Predictive confidence reduction of these potentially ``high-confidence samples'' is a downside of existing calibration approaches. We mitigate this by proposing a dynamic train-time data pruning strategy that prunes low-confidence samples every few epochs, providing an increase in "confident yet calibrated samples". We demonstrate state-of-the-art calibration performance across image classification benchmarks, reducing training time without much compromise in accuracy. We provide insights into why our dynamic pruning strategy that prunes low-confidence training samples leads to an increase in high-confidence samples at test time.
translated by 谷歌翻译
The automated synthesis of correct-by-construction Boolean functions from logical specifications is known as the Boolean Functional Synthesis (BFS) problem. BFS has many application areas that range from software engineering to circuit design. In this paper, we introduce a tool BNSynth, that is the first to solve the BFS problem under a given bound on the solution space. Bounding the solution space induces the synthesis of smaller functions that benefit resource constrained areas such as circuit design. BNSynth uses a counter-example guided, neural approach to solve the bounded BFS problem. Initial results show promise in synthesizing smaller solutions; we observe at least \textbf{3.2X} (and up to \textbf{24X}) improvement in the reduction of solution size on average, as compared to state of the art tools on our benchmarks. BNSynth is available on GitHub under an open source license.
translated by 谷歌翻译
Of late, insurance fraud detection has assumed immense significance owing to the huge financial & reputational losses fraud entails and the phenomenal success of the fraud detection techniques. Insurance is majorly divided into two categories: (i) Life and (ii) Non-life. Non-life insurance in turn includes health insurance and auto insurance among other things. In either of the categories, the fraud detection techniques should be designed in such a way that they capture as many fraudulent transactions as possible. Owing to the rarity of fraudulent transactions, in this paper, we propose a chaotic variational autoencoder (C-VAE to perform one-class classification (OCC) on genuine transactions. Here, we employed the logistic chaotic map to generate random noise in the latent space. The effectiveness of C-VAE is demonstrated on the health insurance fraud and auto insurance datasets. We considered vanilla Variational Auto Encoder (VAE) as the baseline. It is observed that C-VAE outperformed VAE in both datasets. C-VAE achieved a classification rate of 77.9% and 87.25% in health and automobile insurance datasets respectively. Further, the t-test conducted at 1% level of significance and 18 degrees of freedom infers that C-VAE is statistically significant than the VAE.
translated by 谷歌翻译
We study the task of training regression models with the guarantee of label differential privacy (DP). Based on a global prior distribution on label values, which could be obtained privately, we derive a label DP randomization mechanism that is optimal under a given regression loss function. We prove that the optimal mechanism takes the form of a ``randomized response on bins'', and propose an efficient algorithm for finding the optimal bin values. We carry out a thorough experimental evaluation on several datasets demonstrating the efficacy of our algorithm.
translated by 谷歌翻译
Decentralized bilevel optimization has received increasing attention recently due to its foundational role in many emerging multi-agent learning paradigms (e.g., multi-agent meta-learning and multi-agent reinforcement learning) over peer-to-peer edge networks. However, to work with the limited computation and communication capabilities of edge networks, a major challenge in developing decentralized bilevel optimization techniques is to lower sample and communication complexities. This motivates us to develop a new decentralized bilevel optimization called DIAMOND (decentralized single-timescale stochastic approximation with momentum and gradient-tracking). The contributions of this paper are as follows: i) our DIAMOND algorithm adopts a single-loop structure rather than following the natural double-loop structure of bilevel optimization, which offers low computation and implementation complexity; ii) compared to existing approaches, the DIAMOND algorithm does not require any full gradient evaluations, which further reduces both sample and computational complexities; iii) through a careful integration of momentum information and gradient tracking techniques, we show that the DIAMOND algorithm enjoys $\mathcal{O}(\epsilon^{-3/2})$ in sample and communication complexities for achieving an $\epsilon$-stationary solution, both of which are independent of the dataset sizes and significantly outperform existing works. Extensive experiments also verify our theoretical findings.
translated by 谷歌翻译